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We have proposed a model for the one-dimensional Brownian motion of a single particle in a
singular potential field in our previous paper [Phys. Rev. E 50, 2491 (1994)]. In this Brief Report,
we further discuss this model and show that, in some special cases, the Brownian motion can be
considered as a finite-valued alternating renewal process, which has been investigated by Lowen and
Teich [Phys. Rev. E 47, 992 (1993)]. The numerical results here are in agreement with those drawn

by Lowen and Teich.
PACS number(s): 05.45.+b, 05.40.+j, 64.60.Fr

In our previous paper [1], we have proposed a simple
one-dimensional model about the Brownian motion of a
single particle in a central potential and its generaliza-
tion. The model is described by the following equation:
for z # 0, (1)

&= _csgn(x)  I(t)

|z ™

where ¢, m, and n are constants and I'(¢) is a Gaussian
white noise with properties

(r@e) =0
and
(T(BL(t')) =2Dé(t - t'),

where D is a constant. Without loss of generality, c is
taken to be unity. The case of m = 2 and n = 1 has
been discussed in detail in Ref. [1], and in this case the
power spectrum of the position z has the form of 1/f<
with a ~ 1. In this Brief Report, we discuss the case of
m = n+1, with n being relatively large. The results show
that in this case the Brownian motion can be considered
as a finite-valued alternating renewal process, which has
been investigated by Lowen and Teich [2].

When m = n + 1, Eq. (1) assumes the following form:
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sgn(x) | I'(2)

T = e T zn for = #0. (2)
From Eq. (2), we can see that, with n being relatively
large, the values and the oscillations of £ must be very
small when z is larger than 1. In other words, in this
case, the motion of the particle is relatively quiescent and
long-time correlated. The corresponding Fokker-Planck

equation for z > 0 is

O Wity =—[2p0@) - Z p@wy) W )
ot ’ Oz Oz2 ’
with
1 Dn D
D(”(w)=—m“m, D(z)(m)=;;z‘;‘

Here W (z,t) is the probability density function, and
DM (z), D?)(z) are the drift and diffusion coefficients,
respectively. Obviously, the above equation has a sta-
tionary solution, which has the form

W (z) ~ =™ exp (_—;—ﬁ> for > 0. (4a)
Similarly, we can also get the solution for z < 0
_m)"

W () ~ ()" exp (— )

From Egs. (4a) and (4b) we can see that the probability

) for <0. (4b)
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W (z) has two sharp peaks at £ = +1 when n is very
large. In order to describe the motion of the particle
clearly and conveniently, we denote the state of z ~ 1 as
state 1 and the state of z ~ —1 as state 2. Because of the
existence of the noise term in Eq. (1) and the symmetry
of the potential, the particle must oscillate between the
state 1 and state 2. So, the motion of the particle may
be approximately regarded as a finite-valued alternating
renewal process in this case. The following numerical
calculation also shows that the process of motion is a
fractal renewal process and the power spectrum of the
position z has the form of 1/f* with a =~ 1.5.

Using the numerical algorithm in Ref. [1], we can cal-
culate from Eq. (2) the position z as a function of time ¢.
By squaring the fast Fourier transformation of the posi-
tion z(t) we can obtain the power spectrum S(f) of the
position z(t). In the numerical calculation, after a long-
time transient, the fluctuations of the position z(¢) and
its corresponding power spectrum S(f) are independent
of the initial position z(0) of the particle.

Now let us examine the fluctuations of position z(t). In
the numerical calculation, we choose D = 0.1 and record
the positions z(t) every time interval of 0.0002. (The
relationships among D, the fluctuations, and the power
spectrum have been discussed in Ref. [1], so we do not
repeat them here.) Figure 1 shows the fluctuations of z(t)
for the case m = n + 1 = 64. This figure only contains
1024 data points of the time sequence of z(¢). From Fig. 1
we can see that the particle is either in state 1 or state
2 and alternates between these two states now and then.
Meanwhile, only when |z| is slightly larger than 1, can
the dwelling time during which the particle stays in state
1 or 2 be long. When the particle is far away from state
1 or 2, the particle will rapidly go back to one of those
two states. In addition, we can also see that there exist
dwelling times of all scales, with the resolution limited
only by the calculating time. To show this, the density
D(t) of the dwelling time ¢ during which the particle
stays in one state before alternating to another one is
calculated. In Fig. 2, we present the plot of D(t) versus
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FIG. 1. The fluctuations of the position z(t) when D =
0.1 and m = n+1 = 64; here both z(t) and t are dimensionless
and only the first 1024 data points are shown.
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FIG. 2. The density D(t) of the dwelling time t decays

in a power-law form; here we have taken the time interval of
0.0002 as the unit of the time. The dashed line has a slope of
—1.5.

t; here ¢ is the dwelling time, and we have taken 0.0002
as the unit of the time. From this figure we can see that
there exists a power-law relation

D(t) oc t=P; (5)

here 3 is about 1.5. In Fig. 3 the relations between D(t)
and t for the cases of m = n+1 = 8, 16, 32, 64, 128
are given. One can see that the slopes of different curves
are almost equal to each other. The corresponding power
spectrum is shown in Fig. 4. In this plot, each curve is
obtained by averaging 10 samples, and smoothed by av-
eraging over 0.05 unit of In f. In order to exhibit the
power spectra of the position = over a wide range of fre-
quency, every time sequence of x(t) contains a total of
262144 data points. From Fig. 4 we can see that the
power spectra for different cases of n all behave as 1/f*
with o being almost the same for different cases. In ad-
dition, the sum of a and (3 satisfies a + 8 ~ 3.0, which
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FIG. 3. The densities D(t) of the dwelling time ¢ for the
casesof m =n +1 =8, 16, 32, 64, 128. The time unit here
is the same as that in Fig. 2.
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FIG. 4. The power spectra of the position for the cases
of m=mn+1=8, 16, 32, 64, 128. The dashed curve has a
slope of —1.5.

is in agreement with the theoretical result of Ref. [2].
With the power-law form for the density D(t), the au-
thors of Ref. [2] demonstrated that some other quantities
also followed power-law forms, which they believed to be
an indication of the fractal nature of the motion of the
particle.

As we have shown in Ref. [1], when m = 2, the model
can be regarded as a description of motion of the particle
in a central potential. In this case the motion of the
particle is relatively complex and the power spectrum of
the position z has the form of 1/f. When m becomes
large, the motion of the particle becomes very simple
and is a fractal renewal process. Based on the results of
Ref. [2], this model might propose an explanation of the
1/f noise in amorphous semiconductors, etc.

In conclusion, we have considered in this Brief Report
a special case of the simple model for a one-dimensional
Brownian motion of the single particle in a singular po-
tential proposed in Ref. [1]. Numerical calculations show
that the process of the Brownian motion of the particle is
a fractal renewal process, and that the relation between
the exponents a and S is in agreement with the theoret-
ical one drawn in Ref. [2]. So, we show how a singular
potential and a white-noise driving function combine to
produce fractal behavior.
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